Ancient and medieval background
Further information: Aristotelian Physics and Science in the Middle Ages
The scientific revolution was built upon the foundation of ancient Greek learning and science in the Middle Ages, as it had been elaborated and further developed by Roman/Byzantine science and medieval Islamic science. Some scholars have noted a direct tie between "particular aspects of traditional Christianity" and the rise of science. The "Aristotelian tradition" was still an important intellectual framework in the 17th century, although by that time natural philosophers had moved away from much of it. Key scientific ideas dating back to classical antiquity had changed drastically over the years, and in many cases been discredited. The ideas that remained, which were transformed fundamentally during the scientific revolution, include:
- Aristotle's cosmology that placed the Earth at the center of a spherical hierarchic cosmos. The terrestrial and celestial regions were made up of different elements which had different kinds of natural movement.
- The terrestrial region, according to Aristotle, consisted of concentric spheres of the four elements—earth, water, air, and fire. All bodies naturally moved in straight lines until they reached the sphere appropriate to their elemental composition—their natural place. All other terrestrial motions were non-natural, or violent.
- The celestial region was made up of the fifth element, aether, which was unchanging and moved naturally with uniform circular motion. In the Aristotelian tradition, astronomical theories sought to explain the observed irregular motion of celestial objects through the combined effects of multiple uniform circular motions.
- The Ptolemaic model of planetary motion: based on the geometrical model of Eudoxus of Cnidus, Ptolemy's Almagest, demonstrated that calculations could compute the exact positions of the Sun, Moon, stars, and planets in the future and in the past, and showed how these computational models were derived from astronomical observations. As such they formed the model for later astronomical developments. The physical basis for Ptolemaic models invoked layers of spherical shells, though the most complex models were inconsistent with this physical explanation.
It is important to note that ancient precedent existed for alternative theories and developments which prefigured later discoveries in the area of physics and mechanics; but in light of the limited number of works to survive translation in a period when many books were lost to warfare, such developments remained obscure for centuries and are traditionally held to have had little effect on the re-discovery of such phenomena; whereas the invention of the printing press made the wide dissemination of such incremental advances of knowledge commonplace. Meanwhile, however, significant progress in geometry, mathematics, and astronomy was made in medieval times, particularly in the Islamic world as well as Europe.
It is also true that many of the important figures of the scientific revolution shared in the general Renaissance respect for ancient learning and cited ancient pedigrees for their innovations. Nicolaus Copernicus (1473–1543), Kepler (1571–1630), Newton (1642–1727), and Galileo Galilei (1564–1642) all traced different ancient and medieval ancestries for the heliocentric system. In the Axioms Scholium of his Principia, Newton said its axiomatic three laws of motion were already accepted by mathematicians such as Huygens (1629–1695), Wallace, Wren and others. While preparing a revised edition of his Principia, Newton attributed his law of gravity and his first law of motion to a range of historical figures.
Despite these qualifications, the standard theory of the history of the scientific revolution claims that the 17th century was a period of revolutionary scientific changes. Not only were there revolutionary theoretical and experimental developments, but that even more importantly, the way in which scientists worked was radically changed. For instance, although intimations of the concept of inertia are suggested sporadically in ancient discussion of motion, the salient point is that Newton's theory differed from ancient understandings in key ways, such as an external force being a requirement for violent motion in Aristotle's theory.
Scientific method
Under the scientific method that was defined and applied in the 17th century, natural and artificial circumstances were abandoned, and a research tradition of systematic experimentation was slowly accepted throughout the scientific community. The philosophy of using an inductive approach to nature — to abandon assumption and to attempt to simply observe with an open mind — was in strict contrast with the earlier, Aristotelian approach of deduction, by which analysis of known facts produced further understanding. In practice, of course, many scientists (and philosophers) believed that a healthy mix of both was needed — the willingness to question assumptions, yet also to interpret observations assumed to have some degree of validity.
By the end of the scientific revolution the qualitative world of book-reading philosophers had been changed into a mechanical, mathematical world to be known through experimental research. Though it is certainly not true that Newtonian science was like modern science in all respects, it conceptually resembled ours in many ways. Many of the hallmarks of modern science, especially with regard to its institutionalization and professionalization, did not become standard until the mid-19th century.
Empiricism
The Aristotelian scientific tradition's primary mode of interacting with the world was through observation and searching for "natural" circumstances through reasoning. Coupled with this approach was the belief that rare events which seemed to contradict theoretical models were aberrations, telling nothing about nature as it "naturally" was. During the scientific revolution, changing perceptions about the role of the scientist in respect to nature, the value of evidence, experimental or observed, led towards a scientific methodology in which empiricism played a large, but not absolute, role.
By the start of the scientific revolution, empiricism had already become an important component of science and natural philosophy. Prior thinkers, including the early 14th century nominalist philosopher William of Ockham, had begun the intellectual movement toward empiricism.
The term British empiricism came into use to describe philosophical differences perceived between two of its founders Francis Bacon, described as empiricist, and René Descartes, who was described as a rationalist. Thomas Hobbes, George Berkeley, and David Hume were the philosophy's primary exponents, who developed a sophisticated empirical tradition as the basis of human knowledge.
The recognized founder of empiricism was John Locke who proposed in An Essay Concerning Human Understanding (1689) that the only true knowledge that could be accessible to the human mind was that which was based on experience. He argued that the human mind was created as a tabula rasa, a "blank tablet," upon which sensory impressions were recorded and built up knowledge through a process of reflection.
Baconian science
The philosophical underpinnings of the scientific revolution were laid out by Francis Bacon, who has been called the father of empiricism. His works established and popularised inductive methodologies for scientific inquiry, often called the Baconian method, or simply the scientific method. His demand for a planned procedure of investigating all things natural marked a new turn in the rhetorical and theoretical framework for science, much of which still surrounds conceptions of proper methodology today.
Bacon proposed a great reformation of all process of knowledge for the advancement of learning divine and human, which he called Instauratio Magna (The Great Instauration). For Bacon, this reformation would lead to a great advancement in science and a progeny of new inventions that would relieve mankind's miseries and needs. His Novum Organum was published in 1620. He argued that man is "the minister and interpreter of nature", that "knowledge and human power are synonymous", that "effects are produced by the means of instruments and helps", and that "man while operating can only apply or withdraw natural bodies; nature internally performs the rest", and later that "nature can only be commanded by obeying her". Here is an abstract of the philosophy of this work, that by the knowledge of nature and the using of instruments, man can govern or direct the natural work of nature to produce definite results. Therefore, that man, by seeking knowledge of nature, can reach power over it – and thus reestablish the "Empire of Man over creation", which had been lost by the Fall together with man's original purity. In this way, he believed, would mankind be raised above conditions of helplessness, poverty and misery, while coming into a condition of peace, prosperity and security.
For this purpose of obtaining knowledge of and power over nature, Bacon outlined in this work a new system of logic he believed to be superior to the old ways of syllogism, developing his scientific method, consisting of procedures for isolating the formal cause of a phenomenon (heat, for example) through eliminative induction. For him, the philosopher should proceed through inductive reasoning from fact to axiom to physical law. Before beginning this induction, though, the enquirer must free his or her mind from certain false notions or tendencies which distort the truth. In particular, he found that philosophy was too preoccupied with words, particularly discourse and debate, rather than actually observing the material world: "For while men believe their reason governs words, in fact, words turn back and reflect their power upon the understanding, and so render philosophy and science sophistical and inactive."
Bacon considered that it is of greatest importance to science not to keep doing intellectual discussions or seeking merely contemplative aims, but that it should work for the bettering of mankind's life by bringing forth new inventions, having even stated that "inventions are also, as it were, new creations and imitations of divine works". He explored the far-reaching and world-changing character of inventions, such as the printing press, gunpowder and the compass.
No comments:
Post a Comment