Translate

Monday, November 7, 2016

Scientific revolution - part 1

The scientific revolution was the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transformed the views of society about nature. The scientific revolution began in Europe towards the end of the Renaissance period and continued through the late 18th century, influencing the intellectual social movement known as the Enlightenment. While its dates are disputed, the publication in 1543 of "Nicolaus Copernicus's De revolutionibus orbium coelestium" (On the Revolutions of the Heavenly Spheres) is often cited as marking the beginning of the scientific revolution.
A first phase of the scientific revolution, focused on the recovery of the knowledge of the ancients, can be described as the Scientific Renaissance and is considered to have ended in 1632 with publication of "Galileo's Dialogue Concerning the Two Chief World Systems". The completion of the scientific revolution is attributed to the "grand synthesis" of Isaac Newton's 1687 Principia, that formulated the laws of motion and universal gravitation. By the end of the 18th century, the scientific revolution had given way to the "Age of Reflection."
The concept of a scientific revolution taking place over an extended period emerged in the eighteenth century in the work of Jean Sylvain Bailly, who saw a two-stage process of sweeping away the old and establishing the new.

Introduction


Advances in science have been termed "revolutions" since the 18th century. In 1747, Clairaut wrote that "Newton was said in his own lifetime to have created a revolution". The word was also used in the preface to Lavoisier's 1789 work announcing the discovery of oxygen. "Few revolutions in science have immediately excited so much general notice as the introduction of the theory of oxygen ... Lavoisier saw his theory accepted by all the most eminent men of his time, and established over a great part of Europe within a few years from its first promulgation."
In the 19th century, William Whewell established the notion of a revolution in science itself (or the scientific method) that had taken place in the 15th–16th century. "Among the most conspicuous of the revolutions which opinions on this subject have undergone, is the transition from an implicit trust in the internal powers of man's mind to a professed dependence upon external observation; and from an unbounded reverence for the wisdom of the past, to a fervid expectation of change and improvement." This gave rise to the common view of the scientific revolution today:
"A new view of nature emerged, replacing the Greek view that had dominated science for almost 2,000 years. Science became an autonomous discipline, distinct from both philosophy and technology and came to be regarded as having utilitarian goals."

It is traditionally assumed to start with the Copernican Revolution (initiated in 1543) and to be complete in the "grand synthesis" of Isaac Newton's 1687 Principia. Much of the change of attitude came from Francis Bacon whose "confident and emphatic announcement" in the modern progress of science inspired the creation of scientific societies such as the Royal Society, and Galileo who championed Copernicus and developed the science of motion.
In the 20th century, Alexandre Koyré introduced the term "Scientific Revolution", centering his analysis on Galileo, and the term was popularized by Butterfield in his Origins of Modern ScienceThomas Kuhn's 1962 work The Structure of Scientific Revolutions emphasized that different theoretical frameworks—such as Einstein's relativity theory and Newton's theory of gravity, which it replaced—cannot be directly compared.


Significance

The period saw a fundamental transformation in scientific ideas across mathematics, physics, astronomy, and biology in institutions supporting scientific investigation and in the more widely held picture of the universe. The scientific revolution led to the establishment of several modern sciences. In 1984, Joseph Ben-David wrote:
Rapid accumulation of knowledge, which has characterized the development of science since the 17th century, had never occurred before that time. The new kind of scientific activity emerged only in a few countries of Western Europe, and it was restricted to that small area for about two hundred years. (Since the 19th century, scientific knowledge has been assimilated by the rest of the world).
Many contemporary writers and modern historians claim that there was a revolutionary change in world view. In 1611 the English poet, John Donne, wrote:
[The] new Philosophy calls all in doubt,
The Element of fire is quite put out;
The Sun is lost, and th'earth, and no man's wit
Can well direct him where to look for it.
Mid-20th century historian Herbert Butterfield was less disconcerted, but nevertheless saw the change as fundamental:
Since that revolution turned the authority in English not only of the Middle Ages but of the ancient world—since it started not only in the eclipse of scholastic philosophy but in the destruction of Aristotelian physics—it outshines everything since the rise of Christianity and reduces the Renaissance and Reformation to the rank of mere episodes, mere internal displacements within the system of medieval Christendom.... [It] looms so large as the real origin both of the modern world and of the modern mentality that our customary periodization of European history has become an anachronism and an encumbrance.
The history professor Peter Harrison attributes Christianity to having contributed to the rise of the scientific revolution:
historians of science have long known that religious factors played a significantly positive role in the emergence and persistence of modern science in the West. Not only were many of the key figures in the rise of science individuals with sincere religious commitments, but the new approaches to nature that they pioneered were underpinned in various ways by religious assumptions. ... Yet, many of the leading figures in the scientific revolution imagined themselves to be champions of a science that was more compatible with Christianity than the medieval ideas about the natural world that they replaced.

No comments:

Post a Comment